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Correlated energy shifts in the spectral broadening of coupled vibrational transitions are shown to have clear
signatures in infrared two-dimensional dispersed vibrational echo (DVE) spectroscopy. A model that includes
correlation effects through a correlation coefficient (F) for a bivariate distribution is used to describe two-
dimensional experiments on the coupled carbonyl stretches of Rh(CO)2(C5H7O2) (or RDC) in chloroform.
Signatures of correlated (0< F < +1) and anticorrelated (-1 < F < 0) broadening in DVE experiments
manifest themselves in the depth of modulation of the signal and the magnitude of the echo peak shift. For
the case of RDC, the broadening is highly correlated (F ) 0.9) and can be explained in terms of the solvent-
induced modulation of the Rh electron density.

I. Introduction

Nonlinear spectroscopies have proven to be successful at
characterizing the spectral broadening of electronic and vibra-
tional transitions in solution arising from inter- and intramo-
lecular interactions.1 Such methods have advanced to the point
where system-bath interactions can be described over multiple
time scales.2,3 Increasingly, such methods are being applied to
the study of systems with multiple coordinates in which the
interactions between these coordinates and their environments
are of interest. This is particularly the case with two-dimensional
(2D) spectroscopies,4 where coupling between system coordi-
nates is observed as the formation of cross-peaks in a 2D
spectrum,5-8 and spectral broadening is characterized by the
2D line shape.9-13

The sensitivity of 2D spectroscopies to couplings between
coordinates implies that they will also be sensitive to static and
dynamic correlations in their energies. In particular, for two
coordinates interacting with one another and a bath, one can
imagine interactions that would lead to certain types of
correlated fluctuations in their energies. The energies of the two
coordinates could fluctuate either in a purely random manner,
in a correlated manner where the fluctuations of both states are
equivalent, or in an anticorrelated manner in which they are
precisely opposite. Such correlation effects can be explained
by the disorder in the energies of the coordinates or the coupling
between them. In this paper, we show that the 2D infrared (IR)
spectroscopy of coupled vibrations based on vibrational echo
experiments is sensitive to these correlation effects and can
therefore be used to gain detailed insight into the microscopic
mechanisms of vibrational couplings and vibrational solvation
dynamics.

The influence of correlated broadening on spectroscopic
transitions has been most thoroughly investigated for electronic
chromophore aggregates. Pioneering work in the treatment of
site energy disorder on J-aggregates has shown that correlated
disorder profoundly affects the absorption line shapes of linear
and cyclic aggregates.14-17 Knoester suggested that linear
absorption spectra do not contain sufficient information to
determine the magnitude of site disorder and the degree of
correlation independently; Knoester therefore proposed a two-
color pump-probe spectroscopy as a method for probing these

parameters.18-20 The influence of correlated disorder on the
nonlinear optical response of molecular aggregates was also
studied by Chernyak et al.21,22

The sensitivity of nonlinear spectroscopies to correlation
effects in other structurally disordered systems has been noted
for some time. Photochemical hole-burning measurements on
dye molecules23,24 and difference-frequency-mixing theories25

demonstrated the effect of the correlation of inhomogeneously
broadened transitions on the spectral line widths. The influence
of correlated disorder on photon echo experiments in semi-
conductor quantum wells has also been shown to be signifi-
cant.26-28 More recently, Yang and Fleming have discussed how
nonlinear techniques can help describe intermolecular energy-
transfer processes in disordered systems with correlation in the
transition energies.29 Also, the signatures of diagonal and off-
diagonal disorder in the 2D IR spectroscopy of coupled
vibrations have been described.30 Correlated fluctuations be-
tween fundamental and overtone vibrational transition frequen-
cies have been addressed for fifth-order Raman spectroscopy
as well.31

In this paper we investigate correlation effects in the spectral
broadening of two coupled vibrational coordinates using dis-
persed vibrational echo (DVE) spectroscopy. The results
presented here are modeled using the nonlinear response from
two coupled vibrations which are ensemble averaged over a
bivariate distribution that incorporates correlation between the
transition frequencies. The degree of correlation in the energy
shifts of the two vibrations is quantified through a correlation
coefficient. The experimental data are shown to have distinct
signatures of the degree of correlation: the depth of the
modulation of beats on the signal and the magnitude of the echo
peak shift. Experiments on a metal dicarbonyl in chloroform
show clear evidence for strongly correlated spectral broadening
of the two carbonyl-stretching transitions. These results parallel
the recent work of Fayer and co-workers who have also applied
2D DVE spectroscopy to investigate correlated inhomogeneous
broadening.32,33

II. Experimental Section

Two-dimensional dispersed vibrational echo (2D DVE)
spectroscopy is a resonant third-order method that monitors the
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evolution of vibrational coherences as a function of two
independent time periodsτ1 andτ3.8,34The third-order nonlinear
signal Es

(3)(ks) is generated by the interaction of the sample
with a sequence of three-pulsed infrared laser fieldsE1(k1), E2-
(k2), andE3(k3) that radiate the signal into the phase-matching
directionks ) -k1 + k2 + k3. Vibrational coherences initially
created by the first field are acted on by the remaining fields
after a delayτ1, leading to either the rephasing of the initial
coherence, further excitation of the vibration, or the transfer of
the coherence to a coupled vibration. The frequency components
of the signal radiated from the sample duringτ3 represent the
second dimension in the experiment and reflect the final coherent
state of the system. For two coupled vibrations, the signal must
be described in terms of a six-level system consisting of the
ground state and singly and doubly excited states. These states
lead to a response expressed as a sum over 14 different nonlinear
processes that satisfy the phase-matching condition.35,36 Two-
dimensional dispersed electronic and vibrational photon echo
experiments such as these have been used to study electronic
dephasing in dye molecules,37 the interaction between carriers
in semiconductors,27,28,38and vibrational inhomogeneous broad-
ening.8

The experimental apparatus is described in detail in the
literature.39 Briefly, we used 90 fs mid-IR pulses (λ ) 4.9 mm;
n ) 2050 cm-1) generated by difference frequency mixing of
the signal (λ ) 1.3 mm) and idler (λ ) 1.9 mm) outputs of a
BBO optical parametric amplifier in an AgGaS2 crystal. The
IR beam was split into three pulses and focused into the sample
(ω0 ) 150 mm) in a standard “boxcar” configuration using a
10-cm parabolic mirror. The timing between the first pulse and
the time-coincident second and third fieldsτ1 was controlled
with a 0.1µm stepper motor. The nonlinear signal emitted from
the sample was collimated by a second parabolic mirror,
dispersed into its Fourier componentsω3 in a 190-mm grating
monochromator, and then detected after exiting the exit slit by
a single-element HgCdTe detector. A 2D data set was con-
structed by collecting signal amplitude data in 2 cm-1 intervals
in ω3 and 30 fs steps inτ1. The polarization of each field in the
experiment was controlled with wire-grid polarizers. The data
presented here were taken in the all-parallel polarization
geometryRzzzz.

Two-dimensional DVE experiments have been performed on
the anharmonically coupled symmetric (s) and asymmetric (a)
carbonyl (-C≡O) stretching modes of acetylacetonato-dicar-
bonylrhodium(I), Rh(CO)2(C5H7O2), or RDC. In addition to the
fundamental transitions ofa and s modes, transitions of the
singly excited states into their corresponding overtone and
combination bands are also resonant with the pulse spectrum.
Hence, the 2D DVE experiment is sensitive to six resonances.7

The FT-IR spectrum of RDC (Fluka) dissolved in spectroscopic-
grade chloroform (Aldrich) shows two fundamental transitions
at ωa ) 2015 cm-1 and ωs ) 2084 cm-1 with FWHM line
widths of ∆ωa ) 14.6 cm-1 and ∆ωa ) 9.3 cm-1. The
anharmonic shifts determined from the FT-IR overtone and
combination spectrum are∆aa ) ∆ss ) 11 cm-1 and∆as ) 24
cm-1, respectively. These are in accordance with the previously
published results of pump-probe experiments.40 Here we refer
to the resonances between one- and two-quantum states as
overtones and combination transitions, although these terms are
used for transitions between zero- and two-quantum states in
traditional vibrational spectroscopy. The experiments were
performed at room temperature with a 0.01 M sample held in
a CaF2 cell with a 0.2 mm path length corresponding to a peak
optical density of 0.5.

III. Theory

Here we derive an analytical form for the total third-order
nonlinear signal for the 2D DVE experimentS(τ1,ω3) from two
coupled vibrational modes. The nonlinear response is obtained
by ensemble averaging the individual contributions to the total
third-order nonlinear polarization over a bivariate distribution
function that includes the effects of correlated frequency shifts
for the two coordinates.

Correlation of Spectrally Broadened Transitions. For a
particular molecular vibrational transitionm, its frequencyωm

can be defined as

whereωm
o is the ensemble-averaged transition frequency and

∆ωm is the frequency shift for an individual transition relative
to the mean. The shift∆ωm is a random variable that character-
izes the spectral distribution. It is generally time dependent;2,41

however, here we will work in the slow modulation limit, taking
∆ωm to be static. When we introduce a second transitionn, even
if the statistics for∆ωm are treated as being random, microscopic
interactions between these coordinates may lead to a correlation
between individual transition shifts∆ωn and ∆ωm. We can
formulate the statistical interdependence between∆ωm and∆ωn

through a Normal joint probability distribution function (PDF)
that can be written as

whereσi is the width of the transition frequency distribution
around the central frequencyωi

o and F is the correlation
coefficient, which is defined as the normalized covariance of
the random variables∆ωn and∆ωm:42

Here 〈...〉 denotes a joint average of the individual transitions
over the ensemble. Equation 3 shows thatF can take on values
between-1 and +1, where the magnitude ofF reflects the
degree of correlation of the individual frequencies. For the
limiting case ofF ) (1, a complete linear dependence exists
between the variables∆ωm and∆ωn described by

that, in the case whereσm ) σn, leads to

The difference of the two transition frequencies for a particular
molecule is constant whenF ) +1, whereas their sum is
constant whenF ) -1. These limiting cases, illustrated in Figure
1, are termed correlated and anticorrelated broadening. In this
limit, G(∆ωm,∆ωn) reduces to a product of a univariate Normal
Gaussian PDF and aδ function, showing that each value of
∆ωm dictates a single value of∆ωn. For any other value, the
magnitude ofF represents the degree to which the frequencies
are correlated. Statistical independence requires thatF ) 0, for

ωm ) ωm
o + ∆ωm (1)

G(∆ωm,∆ωn) ) 1

2πx1 - F2σmσn

×

exp[- 1

2(1 - F2)(∆ωm
2

σm
2

- 2F
∆ωm∆ωn

σmσn
+

∆ωn
2

σn
2 )] (2)

F )
〈∆ωm∆ωn〉

σmσn
(3)

∆ωn ) (
σn

σm
∆ωm (4)

ωm - ωn ) ωn
o - ωm

o (5)
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which G(∆ωm,∆ωn) becomes a product of two independent
univariate Normal Gaussian distributions.

Response Functions.The third-order nonlinear vibrational
response from a pair of vibrational coordinates requires the
consideration of the six lowest vibrational states for the coupled
system.7,35,36 For the current case, we used the optical Bloch
formalism, including orientational relaxation, for which the
nonlinear response as a function of the two-time variables
describing 2D DVE experiments is written for a given polariza-
tion conditionijkl as

wherecijkl
νκøλ is a tensorial orientational factor that is dependent

on the polarization conditionsijkl and the vibrational interaction
pathwayνκøλ. In the present 2D DVE experiments with parallel
excitation polarization (Rzzzz), czzzz

mmmm) 1/5 andczzzz
mmnn) czzzz

mnmn

) 1/15.35 In eq 9,µm,0, µmm,m, andµnm,m are the transition dipole-
moment matrix elements of the fundamental (|00〉 f |10〉),
overtone (|10〉 f |20〉), and combination (|10〉 f |11〉) transi-
tions, respectively, for the vibrationm. For the summation, the
fundamental overtone and combination transitions of the asym-
metric vibration are labeleda, and the fundamental overtone
and combination transitions of the symmetric vibration are
labeleds. The damping of vibrational coherences is described
as

whereΓ may have contributions from isotropic pure dephasing
and vibrational lifetime and reorientation of the molecule
through small-angle diffusion with a diffusion constantDor.
Anharmonic shifts of the overtone (m ) n) and combination
(m * n) transitions relative to the fundamental are represented
by ∆mn. In modeling the distribution, we have taken these
anharmonic shifts as constant values, implying that they are fully
correlated with the fundamentals.

The ensemble-averaged response function is obtained by
integrating eq 6 over the joint PDF

To describe the 2D DVE signal, the total response is obtained
by the Fourier-Laplace transformation alongτ3

for which we obtain the following analytical expression:

Here,Fmn ) 1 for m ) n, andFmn ) F for m * n. On the basis
of the dipole amplitudes in other studies of RDC,7 we have taken
the transition dipoles for fundamentala ands vibrations to be
equal and all the other transition dipoles between the one- and
two-quantum states to be scaled harmonically, i.e.,µa,0 ) µs,0

) µ, µas,a ) µas,s ) µ, andµaa,a ) µss,s ) x2µ.
Equation 9 describes the total response for a six-level system

arising from two inhomogeneously broadened vibrational transi-
tions. The primary assumptions made about the dynamics of
the system are (i) correlated broadening described by a bivariate
Normal distribution with a correlation coefficientF, (ii) constant
anharmonicity parameters, and (iii) identical dephasing dynamics
of a particular transition for all members of the ensemble. Thus,
the dephasing of the overtone and combination bands have been
set equal to those of the corresponding fundamentals; more
generally, this is not required. Finally, the signal detected in a
2D DVE experiment is calculated in the short pulse limit by
taking the absolute value square of the total response function,
S(τ1,ω3) ∝ |R(τ1,ω3)|2.

Figure 2 shows the calculated 2D DVE signals of two coupled
vibrations for the two limiting cases of the perfectly correlated
(F ) +1) and perfectly anticorrelated (F ) -1) broadening.
All other parameters in eq 9 have been held constant and are
chosen to reflect the dynamics of the symmetric and asymmetric
carbonyl stretches of RDC in CHCl3, for which σi ≈ ∆i > Λi.
Figure 2 shows distinct signatures of correlated and anticorre-
lated broadening, which are reflected in the dispersed signal
by polarization beats alongτ1 at roughly the splitting between
the fundamental transitions. For a given fundamental detection
frequencyω3, these oscillations originate from the interference
between two types of subensembles that differ in their field-
induced vibrational interaction pathways: (i) those for which
the initially excited vibrational coordinate was the same as the

Figure 1. Schematic representation of perfectly correlated (F ) +1)
and perfectly anticorrelated (F ) -1) broadening of the absorption
lines of two coupled vibrations.

Rijkl(τ1,τ3) ) ∑
m,n)a,s

exp[i(ωm
o + ∆ωm)τ1 - Λm,0τ1] ×

exp[-i(ωn
o + ∆ωn)τ3 - Λn,0τ3] × [(cijkl

mmnn+

cijkl
mnmn)|µm,0|2|µn,0|2 - ei∆mnτ3(cijkl

mmnn|µm,0|2|µmn,m|m*n
2 +

cijkl
mnmnµm,0µn,0µmn,nµm,mn)] (6)

Λi,j ) Γi,j + 2Dor (7)

R(τ1,τ3) ) ∫-∞

∞
d(∆ωn) ∫-∞

∞
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∞
dτ3 exp(iω3τ3)R(τ1,τ3)

Rzzzz(τ1,ω3) ) ∑
m,n)a,s

2czzzz
mmnn|µ|4 ×

exp[iωm
o τ1 - i(ω3 - ωn

o)
(Λn,0 - Fmnσmσnτ1)

σn
2 ] ×

exp[-(Λm,0 + Λn,0Fmn

σm

σn
)τ1] exp[-(1 - Fmn

2 )
σ

m

2τ1
2

2
-

Λn,0
2

2σn
2] × {exp[-

(ω3 - ωn
o)2

2σn
2 ] ×

erfc[- i(ω3 - ωn
o) + (Λn,0 - Fmnσmσnτ1)

x2σn
] -

exp[-
(ω3 - ωn

o + ∆mn)
2

2σn
2 ] ×

exp[-i∆mn

(Λn,0 - Fmnσmσnτ1)

σn
2 ] ×

erfc[- i(ω3 - ωn
o + ∆mn) + (Λn,0 - Fmnσmσnτ1)
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detected coordinate (ω1 ) ω3) and (ii) those for which the other
coordinate was initially excited and the later pulses in the echo
sequence transferred coherence toω3.8

In the case of perfect correlation, the beats almost completely
modulate the signal alongτ1, and a slight frequency dependence
to the oscillation period is observed near each of the funda-
mentals. Theω3-dependent beat frequency is observed as
diagonally tilted beat contours in the 2D signal. In the case of
purely anticorrelated broadening, the overall-signal decay times
remain approximately the same; however, the depth of the
modulation of beats is dramatically reduced to the point of
vanishing in the tail of the decays. Additionally, in the case of
correlated broadening, a peak shift of the signal away fromτ1

) 0 is observed, whereas no peak shift is observed in the
anticorrelated case. As seen from eq 9, the amplitude and
lifetime of the beats strongly depend on the correlation
coefficient and do not necessarily reflect the lifetime of the
individual coherences. This point should be considered when
deriving dynamical information from experimental photon echo
decay constants on multilevel systems. Similar issues may arise
in photon echo peak shift (3PEPS) measurements on multilevel
systems, where the magnitude of the peak shift will reflect
correlation effects such as the strength of coupling between
states.43,44

The influence ofF on the magnitude of the echo peak shift
during τ1 reflects the manner in which correlated broadening
influences the rephasing ability of vibrational echo experiments
on multilevel systems.21 In traditional echo experiments on two-
level systems, slowly varying or inhomogeneous contributions
to the dephasing dynamics duringτ1 are rephased duringτ3.
The degree of rephasing influences the magnitude of the echo
peak shift. For echo experiments on multilevel systems, the

system may evolve on two different transitions during the two
time periods. Therefore, the rephasing ability for certain field
interaction sequences depends on the phase relationship between
the phase acquired in one coherence duringτ1, eiωmτ1 , and the
phase reversed in another duringτ3, e-iωnτ3. This in turn will
depend on the correlation between the frequency of the two
coherencesωm andωn. If perfect correlation exists (F ) +1),
the phase acquired duringτ1 can be exactly rephased duringτ3,
leading to a large peak shift. In the case of zero correlation (F
) 0), no phase relationship exists between the coherences, and
rephasing is suppressed. For anticorrelated broadening, the
inverse frequency-shift relationship between the two transitions
leads to additional dephasing duringτ3 and enhanced suppres-
sion of the peak shift in the echo experiment. However, for
anticorrelated broadening, we expect that rephasing, and the
accompanying peak shift, will be recovered with a dispersed
transient-grating experiment.

IV. Results and Discussion

Figure 3a shows the 2D DVE spectrum of the carbonyl-
stretching region of RDC in chloroform. The signal alongτ1 is
deeply modulated with a period of ca. 450 fs, corresponding to
the frequency separation of the fundamentals (70 cm-1). A large
peak shift of the signal maximum away fromτ1 ) 0 is observed
for both fundamentals, and a frequency dependence of this peak
shift results in the tilted shapes of the contours. These are all
clear signatures of strongly correlated spectral broadening. The
decay of the signal from the asymmetric and symmetric
vibrations occurs on different time scales. In addition, we note
that only two features are resolved alongω3, implying that
signals radiated from the fundamental and overtone transitions
overlap, so thatσi ≈ ∆i. Signals radiated from the combination
band are discerned as the twisting of the signal contours in the
wings nearω3 ) 2060 and 1990 cm-1.

Figure 3b gives a fit of the experimental spectrum to the
expression in eq 9 using a nonlinear least-squares-fitting routing
based on a modified Levenberg-Marquart algorithm and a
finite-difference Jacobian. The obtained best-fit parameters are

Figure 2. Simulated 2D DVE spectra of RDC in CHCl3 for the two
limiting cases of (b)r ) -1 and (d)r ) +1 using eq 9. Slices from
the simulation alongω3 ) 2084 cm-1 shown in (a) and (c) illustrate
the magnitude of the echo peak shift forr ) -1 and r ) +1,
respectively. The remaining parameters used in the calculation are
identical for both simulations (σa ) 11.9 cm-1, σs ) 7.5 cm-1, 1/Λa )
1.8 ps, and 1/Λs ) 1.8 ps).

Figure 3. (a) Experimental 2D DVE signals of RDC in CHCl3 and
(b) a calculation obtained from the nonlinear least-squares fit to the
experimental data (σa ) 11.9 cm-1, σs ) 7.5 cm-1, 1/Λa ) 1.8 ps, and
1/Λs ) 1.8 ps). See the text for details.
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given in the figure caption. The fit yields a correlation coefficient
of F ) 0.9 ( 0.1, implying a highly correlated broadening of
the two carbonyl-stretching transitions. The dephasing times of
the asymmetric and symmetric modes are approximately 1.8
ps, which appear to be unreasonably long in comparison to the
3-ps time scale over which the signal vanishes. Equation 9 shows
that the observed exponential decay constant of a given
frequencyω3 is affected by the actual dephasing constants, the
extent of correlation, and the relative magnitude of the broaden-
ing for transitionsm andn. This point was also demonstrated
in a related theoretical study by Cundiff.26 Thus, obtaining
information on dephasing dynamics by fitting a simple expo-
nential to the experimental data may be misleading. Correlation
effects and the relative magnitude of the broadening for different
transitions must be considered. Our best-fit results are in parallel
with this prediction. The predicted widths of the frequency
distribution for the asymmetric and symmetric vibrations are
11.7 and 7.4 cm-1, respectively. Thus, the value ofσ/Λ is ca.
3 for these transitions, which approaches the slow modulation
limit in accordance with our treatment.

The model presented here allows the ensemble-averaged
correlation coefficientF of the frequency modulation of two
transitions to be determined. The magnitude ofF will depend
on the particular details of the coupling between the two
vibrations and specific solute-solvent interactions at the
microscopic level. In the case of RDC, we have described
elsewhere the interaction potential between the two carbonyl
groups in terms of a bilinear coupling constantVij and a diagonal
cubic anharmonicitygiii .39

whereQi is the reduced local vibrational coordinate representing
the stretching motion of one carbonyl group. In such a model,
if there is a distribution of bilinear coupling parametersVij (off-
diagonal disorder), anticorrelated broadening will be observed
since the coupling strength dictates the splitting between the
vibrational eigenenergies. On the other hand, when the anhar-
monicity parametersgiii are distributed (diagonal disorder), a
correlation coefficient must be assigned to describe this joint
bivariate distribution, which in turn could lead to either
correlated or anticorrelated broadening. Thus, while our treat-
ment of the correlated inhomogeneous broadening of the two
coupled vibrations using a joint Gaussian PDF parallels those
of earlier works on the disordered aggregates,14-17 the micro-
scopic interpretation of our results is quite different.

Our experimental results indicate a strong positive correlation
between the transition energies of the asymmetric and the
symmetric vibrations and thus favor the case in which the
solvent leads to a correlated distribution of anharmonicities for
the local CO stretches. In a hexane solution, the RDC absorption
line width is 2.6 cm-1 for both vibrations, and the broadening
is dominated by reorientational relaxation and pure dephasing.
The additional 6.7 and 12 cm-1 broadening of the line widths
for a and s modes in a chloroform solution, respectively, is
attributed to specific solvation effects on the vibrations. It is
well-known that the metal carbonyl-stretching motions are very
sensitive to the electron density of the metal atom due to dπ-
π/ bonding interactions. This interaction favors the donation of
the electron density from the d orbitals of the central metal atom
to the π antibonding (π/) orbitals of the CO group45 and
ultimately modifies the vibronic potential.46 RDC is a planar

(d8) coordination compound, and the Rh atom is exposed to
solvent molecules in the primary solvation shell along the two
axial positions. We suggest that the correlated broadening in
this system arises from solvent density fluctuations from these
axial directions, which modulate the electron density of the Rh
atom. This in turn will modulate the strength of the dπ-π/

bonding between Rh and CO groups in a manner that sym-
metrically influences the individual CO anharmonicities. The
ensemble averaging of either effect will appear as a correlated
distribution of the transition frequencies. Although different,
these mechanisms do not exclude the intramolecular effects of
CO coupling with a thermally populated Rh-C stretch that has
been used to explain temperature-dependent dephasing.46

The model presented here also predicts unique signatures of
correlation effects in the cross-peaks of 2D vibrational spectra.
While the nature of the broadening of fundamental transitions
is reflected in the diagonally elongated ellipticity of the diagonal
peaks,11,12 the correlation of fluctuations will be reflected in
the shape of the cross-peaks. Strongly correlated broadening
will appear as diagonally elongated cross-peaks, whereas
anticorrelated broadening will appear as antidiagonally elongated
cross-peaks. Uncorrelated fluctuations between the two transi-
tions will lead to a symmetric cross-peak.

In summary, our analytical formalism of the total nonlinear
third-order response function of two coupled vibrational motions
using a correlated-broadening model is successful in reproducing
the experimental features of 2D VDE signals such as decay and
line width parameters, tilted contour shapes, and most impor-
tantly the frequency-dependent peak shift. Our results show the
ability of 2D spectroscopies to quantitatively capture the
correlated dynamics of coupled coordinates as well as provide
insight into the microscopic picture of solute-solvent interac-
tions. Although this model successfully reproduces all of the
main features of the 2D signal, the assumption of inhomoge-
neous broadening is an oversimplification of the actual dynamics
of the system. A more general approach to the study of room-
temperature solvation would build correlation effects into
solvation models that allow for arbitrary time scales for system-
bath interactions. Such an approach using spectral densities for
the energy gap between all pairs of states is the focus of ongoing
work.
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